International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Ecophysiological and cytopathological impact of delfin insecticide (Bacillus thuringiensis) to an unicellular ciliate protozoan, Euplotes patella

Author Affiliations

  • 1 Protozoology and Environmental Toxicology Unit, Department of Zoology Nizam College, Osmania University, Hyderabad, INDIA

Res. J. Recent Sci., Volume 1, Issue (4), Pages 64-67, April,2 (2012)

Abstract

Ciliates have been exploited as useful and highly potential models for water quality fluctuations and toxicant influx. They have remained as models due to ubiquitous nature, speed of analysis, faster generation time, minimal epigenetic variability and genomic similarity to highest organism. These organisms have developed specialization of intracellular structures and functions, comparable what has occurred between the different cells of a multicellular organism. Depletion in the food vacuole formation and changes in the contractile vacuole activity highlighted the importance of Euplotes. The tests carried in this study are simple, fast and give overall information about the ecophysiological effects of delfin in response to toxicant influx.

References

  1. Landis W.G. and Yu M.H., Introduction to environmental toxicology, Impacts of chemicals upon Ecological systems, 2nd edn., Lewis, Boca Raton, FL (1995)
  2. Weisse T., Freshwater ciliates as ecophysiological model organisms - lessons from Daphnia, major achievements, and future perspectives, Arch. Hydrobiol., 167, 371-402 (2006)
  3. Gutierrez J.C., Gonzalez A.M., Diaz S. and Ortego R., Ciliates as a potential source of biomarkers / biosensors for heavy metal pollution, Europ. J. Protistol., 39, 461-467 (2003)
  4. Martin-Gonzalez A., Díaz S., Borniquel S., Gallego A. And Gutierrez J. C., Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants, Res. Microbiol., 157, 108-118 (2006)
  5. Rouabhi R., Berrebbah H. and Djebar M.R., Toxicity evaluation of flucycloxuron and diflubenzuron on the cellular model, Paramecium sp, Afri. J. Biotechnology, 5(1), 045-048 (2006)
  6. Kirby P.L., Materials and methods in the study of protozoa. University of California press, Berkeley and Los Angeles, California, 1-55 (1950)
  7. APHA, Standard methods for the examination of water and wastewater, 18th ed. American Public Health Association, Washington, D.C. 2005, Port city Press, Baltimore, Maryland (1995)
  8. Guido P. and Daniel D., Toxicity tests on ciliates. A short Review, J. Ecotoxicol Environ. Saf., 2, 105-114 (1978)
  9. Apostol S., A Bioassay of toxicity using protozoa in the study of aquatic environment pollution and its prevention, Environ Research., 6, 365-372 (1995)
  10. Brutkowska M., The effect of certain salt solutions and osmotic stimuli on the ciliary movement and food intake in Paramecium caudatum, Acta protozool., 4, 353-364 (1967)
  11. Marsot P. and Couillard P., The use of protamine coated slides for immobilizing protozoa, J. Protozool., 20(1), 105-106 (1973)
  12. Masood Hussain M. and Khan M. A., Effects of endosulfan and weedar 96 on contractile vacuole activities of Paramecium caudatum, Bioved., 4(2), 143-146 (1993)
  13. Miyoshi N., Kawano T., Tanaka M., Kadono T., Kosaka T., Kunimoto M., Takahashi T. and Hosoya H., Use of Paramecium species in bioassays for environmental risk management; Determination of IC50 values for water pollutants, J. Health Science., 49, 429–435 (2003)
  14. Amanchi N.R. and Hussain M.M., Cytotoxic effects of delfin insecticide (Bacillus thuringiensis) on cell behaviour, phagocytosis, contractile vacuole activity and macronucleus in a protozoan ciliate Paramecium caudatum, Afri. J. Biotechnol., (7)15, 2637-264 (2008)
  15. Amanchi N.R., Morphological and physiological changes in Euplotes patella for the invitro cytotoxicity assessment of monocrotophos, Int. J. Env. Sci., 1(2), 221-225 (2010)
  16. Edmiston C.E. Jr., Goheen M., Malaney G.W. and Mills W. L., Evaluation of carbamate toxicity: Acute toxicity in a culture of Paramecium multimicronucleatum upon exposure to aldicarb, carbaryl, and mexacarbate as measured by Warburg respirometry and acute plate assay, Environmental Research., 36(2), 338-350 (1985)
  17. Kumar S., Lal R. and Bhatnagar P., The effects of dieldrin, dimethoate and permethrin on Tetrahymena pyriformis, Environ. Poll., 57(4), 275-280 (1989)
  18. Bagrov Y.Y., Manusova N. B. and Nikitina E. R., Effects of arginine_vasopressin and its functional analogues on contractile vacuole of Amoeba proteus: possible mechanisms of signal transduction, Protistology., 3(1), 4-8 (2003)
  19. Mori G., Erra F., Cionini K. and Banchetti R., Sublethal doses of heavy metals and Slow-Down pattern of Euplotes crassus (Ciliophora, Hypotrichia): a behavioural bioassay, Ital. J. Zool., 70, 23-30 (2003)
  20. Yada K., Abe T. and Haga N., Studies of Paramecium caudatum by means of scanning electron microscope and projection X-ray microscope, Biomedical materials and engineering., 19(2-3), 87-92 (2009)
  21. Solanki S. and Paliwal A., Effect of parathion on aquatic ciliate protozoan, Tetrahymena pyriformis in river Kali at district Etah (U.P.), J. Ecophysiol. Occup. Hlth., 7, 125-127 (2007)
  22. Koehring V., The neutral red reaction, J. Morphol., 49, 45-137 (1930)
  23. Brutkowska M. and Mehr K., Effect of ionic detergents on the phagocytic activity of Tetrahymena pyriformis GL and Paramecium caudatum, Acta Protozool., 15, 67-77 (1976)
  24. Stock C., Gronline H. K., Allen R. D. and Naitoh Y., Osmoregulation in Paramecium: In situ ion gradients permit water to cascade through the cytosol to the contractile vacuole, J. Cell. Sci., 205, 3261-3270 (2002)
  25. Masaki I., Aihara M., Richard S., Allen D. and Fok A. K., Osmoregulation in Paramecium: the locus fluid segregation in the contractile vacuole complex, J. Cell Science., 106, 693-702 (1993)